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Summary

There is no segmentation method that performs perfectly with
any dataset in comparison to human segmentation. Evalua-
tion procedures for segmentation algorithms become critical
for their selection. The problems associated with segmentation
performance evaluations and visual verification of segmenta-
tion results are exaggerated when dealing with thousands of
three-dimensional (3D) image volumes because of the amount
of computation and manual inputs needed.
We address the problem of evaluating 3D segmentation
performance when segmentation is applied to thousands of
confocal microscopy images (z-stacks). Our approach is to in-
corporate experimental imaging and geometrical criteria, and
map them into computationally efficient segmentation algo-
rithms that can be applied to a very large number of z-stacks.
This is an alternative approach to considering existing
segmentation methods and evaluating most state-of-the-art
algorithms. We designed a methodology for 3D segmentation
performance characterization that consists of design, evalu-
ation and verification steps. The characterization integrates
manual inputs from projected surrogate ‘ground truth’ of
statistically representative samples and from visual inspection
into the evaluation. The novelty of the methodology lies in
(1) designing candidate segmentation algorithms by mapping
imaging and geometrical criteria into algorithmic steps,
and constructing plausible segmentation algorithms with
respect to the order of algorithmic steps and their parameters,
(2) evaluating segmentation accuracy using samples drawn
from probability distribution estimates of candidate segmen-
tations and (3) minimizing human labour needed to create
surrogate ‘truth’ by approximating z-stack segmentations
with 2D contours from three orthogonal z-stack projections
and by developing visual verification tools.
We demonstrate the methodology by applying it to a dataset
of 1253 mesenchymal stem cells. The cells reside on 10

Correspondence to: Peter Bajcsy, National Institute of Standards and Technology

(NIST), 100 Bureau Road, Gaithersburg, MD 20899, U.S.A. Tel: 301-975-2958;

fax: 301-975-6097; e-mail: peter.bajcsy@nist.gov

different types of biomaterial scaffolds, and are stained for actin
and nucleus yielding 128 460 image frames (on average, 125
cells/scaffold × 10 scaffold types × 2 stains × 51 frames/cell).
After constructing and evaluating six candidates of 3D seg-
mentation algorithms, the most accurate 3D segmentation
algorithm achieved an average precision of 0.82 and an accu-
racy of 0.84 as measured by the Dice similarity index where
values greater than 0.7 indicate a good spatial overlap. A
probability of segmentation success was 0.85 based on visual
verification, and a computation time was 42.3 h to process
all z-stacks. While the most accurate segmentation technique
was 4.2 times slower than the second most accurate algo-
rithm, it consumed on average 9.65 times less memory per
z-stack segmentation.

Background

Three-dimensional (3D) segmentation methods of digital vol-
umetric data (called z-stacks) from confocal microscopy have
been a research problem for a couple of decades (Lin et al.,
2003; McCullough et al., 2008; Herberich et al., 2011; In-
dhumathi et al., 2011; Chen et al., 2014). In its simplest
form, 3D segmentation is about labelling each volumetric ele-
ment (voxel) as foreground (FRG) or background. The need for
3D segmentation automation becomes prominent when hun-
dreds or thousands of z-stacks have to be processed and the
cost of manual segmentation is prohibitive. It has been widely
accepted (Fenster & Chiu, 2005; Udupa et al., 2006) that eval-
uations of automated segmentation have to include accuracy
(validity), precision (reliability, repeatability) and efficiency
(viability). Our goal is to address the problem of segmentation
evaluation over a very large number of z-stacks.

Automated 3D segmentation over a large number of z-stacks
often comes at a high computational cost, and hence compu-
tational efficiency is of concern. There has been an abundance
of 3D segmentation algorithms published in computer vision
and medical fields with a frequently cited older review by Pal
& Pal (1993). We have followed a more recent succinct review
in Wirjadi (2007) which divides segmentation approaches
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into classes such as thresholding, region-growing, deformable
surfaces, level sets and other concepts (watersheds, fuzzy con-
nectedness, etc.). We selected a class of thresholding-based 3D
segmentation approaches because of experimental criteria and
computational efficiency. Within this class of 3D segmentation
methods, we focus on a segmentation evaluation methodol-
ogy rather than on a broad range of existing 3D segmentation
methods and/or their trade-offs between speed and accuracy.

Although there is a plethora of 3D segmentation algorithms
based on thresholding, each segmentation solution is cus-
tomized to a particular experiment and its datasets by choos-
ing a specific sequence of segmentation steps and parameters.
Thus, the construction and optimization of such 3D segmen-
tation algorithms have to be supported by evaluations and
verifications of segmentation results. The challenges of seg-
menting a large number of z-stacks lie not only in the algorith-
mic design but also in the design of methodology evaluation
procedures that scale over a thousand of z-stacks and minimize
any needed human labour.

Previous work on segmentation evaluation frameworks has
been reported in several papers (Zhang, 1996; Zhang, 2001;
Zou et al., 2004; Cardoso & Corte-Real, 2005; Fenster & Chiu,
2005; Udupa et al., 2006; Shah, 2008). The evaluation meth-
ods are broadly divided into analytical and empirical methods
(Zhang, 1996; Cardoso & Corte-Real, 2005). Due to the diffi-
culties in comparing algorithms analytically, the majority of
published segmentation algorithms are evaluated by empiri-
cal methods that are classified into goodness and discrepancy
types. The goodness type needs a set of conditions according to
human intuition that are mapped into measured parameters.
The discrepancy type is based on the availability of ground
truth or at least a surrogate ‘ground truth’. We have built
our 3D segmentation evaluation methodology as an empirical
discrepancy method with the focus on pixel level accuracy.
Although object-level evaluations might be appropriate for
cell counting or tracking (Cohen et al., 2009), the biological
study behind the current work requires pixel-level evaluations
of 3D cell geometry. The challenges of evaluation lie not only
in establishing a surrogate ‘ground truth’ and measuring ac-
curacy but also in understanding precision of the surrogate
‘truth’ and its labour demands.

Our interest in automated 3D segmentation comes from
investigating the effects of various biomaterial scaffolds on 3D
shape of stem cells (Farooque et al., 2014). It was hypothesized
that a scaffold type affects cell morphology and influences
cell behaviour. To obtain statistically significant evidence for
testing this hypothesis, primary human bone marrow stromal
cells (hBMSCs) were cultured on 10 scaffold types. The cells
were stained for actin and nucleus, and imaged using confocal
laser scanning microscopy (CLSM) over approximately 100
cells (i.e. z-stacks) per scaffold type. To this end, we aim to
measure and analyse 3D cell shapes after cell (FRG) voxels in
each z-stack are labelled by an automated 3D segmentation
algorithm.

In this context, we pose the following research questions:

(1) How do we construct a 3D segmentation algorithm
based on the experiments designed to test the aforemen-
tioned biological hypothesis?

(2) How do we evaluate accuracy and precision of 3D seg-
mentation algorithms over more than a thousand z-
stacks?

(3) How do we verify 3D segmentation algorithmic perfor-
mance over a large number of z-stacks?

We approach the research problems in three steps: design,
evaluate and verify.

The algorithmic design consists of analysing imaging and
geometric criteria of the cell-scaffold interaction experiments,
and then mapping them into a set of algorithmic steps. The
algorithmic steps are ordered into six plausible segmentation
sequences that form the pool of evaluated algorithms.

Next, the accuracy and precision evaluation is executed by
establishing surrogate measures of ‘ground truth’ called ref-
erence segmentations via manual segmentation. We select
two z-stack samples per scaffold for manual segmentation to
minimize the manual labour needed to create reference seg-
mentations. The two samples are the most and the least rep-
resentative z-stacks in terms of FRG voxel counts. The voxel
counts are obtained by six candidate segmentation algorithms.
FRG voxel counts over all cells per scaffold type form six prob-
ability distribution functions (PDFs) that are combined to a
sampling score per z-stack. Experts perform manual segmen-
tation by contouring only two z-stack samples per scaffold
and only three orthogonal max intensity projections of each
z-stack instead of a much larger number of z-stack frames
(12–298 frames). The number of manually contoured 2D im-
ages represents 0.09% of all actin frames (10 scaffolds × 2
samples × 3 orthogonal projections / total number of 64 230
actin frames) that would have to be contoured in order to
create manual segmentations of all 1253 cells based on actin
stain. Sampling adequateness is evaluated visually.

Finally, verification consists of applying to all 10 scaffold
types the two most accurate segmentation algorithms based
on reference segmentations. All 3D segmentation results are
converted into a mosaic of three orthogonal 2D projections
and into 3D meshes for 2D and 3D visual verification. The
preprocessing into 2D mosaics and 3D meshes minimizes
the amount of human time and enables fast browsing
with fixed 2D views and interactive 3D views. In return,
additional measurements are obtained about segmentation
quality and segmentation accuracy estimates are related to
the verification results. The verification provides labels for
(i) rejected cells (e.g. due to faint stain or due to touching the
edges of a field of view (FOV)), (ii) missed cells (i.e. the segment
is other than the desired cell) and (iii) inaccurately segmented
cells (i.e. the segment corresponds to the desired cell but
the shape deviates from the correct shape based on visual
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Table 1. Scaffold-type abbreviations and descriptions.

Abbreviation Description

SC Flat films of spun coat poly(ε-caprolactone) (PCL,
relative molecular mass 80 000 g mol−1)

SC+OS Flat films of spun coat PCL with osteogenic
supplements (OS, 10-nmol L−1 dexamethasone,
20-mmol L−1 β-glycerophosphate, 0.05-mmol
L−1 L-ascorbic acid)

NF Electrospun PCL nanofibres (dia. 589-nm)
NF+OS Electrospun PCL nanofibres with OS
MF Electrospun PCL microfibres (dia. 4.4 μm)
PPS Porous polystyrene scaffolds (Alvetex, pore size

36–40 μm, Reinnervate, Inc.: Sedgefield, Co.
Durham, TS21 3FD, UK)

MG Matrigel (reduced-growth factor Matrigel, BD
Biosciences: San Jose, CA 95131)

FG Fibrin gel [fibrinogen from human plasma (6 mg
mL−1) polymerized with thrombin from human
plasma (25 U mL−1), Sigma-Aldrich Corp: St.
Louis, MO, USA]

CG Collagen gel (PureCol bovine type I collagen,
Advanced Biomatrix: San Diego, CA, USA)

CF Collagen fibrils prepared as described (Elliott et al.,
2007)

verification by an expert). The aforementioned methodology
helps us to characterize segmentation precision, accuracy,
efficiency and the probability of segmentation success/failure.

Materials and methods

We start with the description of z-stacks (3D images), and then
divide the overall methodology of 3D segmentation into de-
sign, evaluation and verification parts. These three parts map
into the three research questions posed in the introduction.

Materials and imaging

The effect of scaffold type on cell and nucleus structure was
investigated with confocal microscopy. Ten scaffolds were in-
vestigated (Table 1).

Primary hBMSCs (Tulane Center for Gene Therapy: New
Orleans, LA, USA, donor #7038, 29 yea female, iliac crest)
were cultured in medium (α-MEM containing 16.5% by vol-
ume fetal bovine serum, 4 mmol L−1 L-glutamine and 1%
by volume of penicillin/streptomycin) in a humidified incu-
bator (37°C with 5-% CO2 by volume) to 70% confluency,
trypsinized [0.25% trypsin by mass containing 1-mmol L−1

ethylenediaminetetraacetate (EDTA), Invitrogen] and seeded
onto substrates at passage 5. SC, SC+OS, NF, NF+OS, MF, PPS
and CF substrates were placed in multiwell plates and cells sus-
pended in medium were seeded onto them at a density of 2500
cells cm−2. MG, FG and CG cells were suspended in the liquid
gel components and dispensed into multiwell plates prior to

gelation such that the cell concentration was 2500 cells cm−2

(based on the area of the well). hBMSCs were cultured for 1
day for all treatments prior to imaging. After 1 day culture,
cells on scaffolds were fixed with 3.7% (vol./vol.) formalde-
hyde and stained for actin (330 nmol L−1 Alexa Fluor 546
phalloidin, Life Technologies: Frederick, MD, USA) and nu-
cleus (0.03 mmol L−1 4’,6-diamidino-2-phenylindole, DAPI,
Life Technologies). More than 100 cells were imaged per scaf-
fold type to provide statistically meaningful results.

Cells were imaged (confocal laser scanning micro-
scope, SP5 II, Leica Microsystems: Buffalo Grove, IL,
USA) using a 63× water-immersion objective (nu-
merical aperture 0.9). A z-stack with two channels
(1 airy unit, actin 543-nm excitation and emission 564–663-
nm; nucleus 405 nm excitation and emission 434–517-nm)
was collected for each of 1253 cells. Only individual hBMSCs
that were not touching other cells (one nucleus per object)
were imaged. Based on the manufacturer’s defined resolution
for the 63× objective (xy = 217-nm and z = 626-nm for 488-
nm wavelength), we defined our acquisition voxel dimensions
at 240-nm × 240-nm × 710-nm (x-,y- and z-axis, respec-
tively) and drew conclusions on shape features greater than
0.1 mm in size. Each z-frame in the z-stacks was exported
as a 1 MB tif image with a resolution of 1024×1024 pixels
(246μm×246μm). Examples of z-frame tif images are shown
in Figure 1. Statistics of the z-frames are summarized in Figure
2. The data collection generated z-stacks of 1253 cells, which is
equivalent to 128 460 z-frames (on average 125 cells/scaffold
× 10 scaffold types × 2 stains × 51 frames/cell frames stored
as tif files) and 135 GB.

Design: construction of candidate 3D segmentation algorithms

For evaluation purposes, the space of all plausible automated
3D segmentation algorithms that are applicable to the 1000+
z-stack experiment should be narrowed down. Each 3D seg-
mentation algorithm consists of a set of algorithmic steps.
We select candidate algorithmic steps based on imaging and
geometrical experimental criteria first. Next, we apply a set
of problem constraints to filter all possible permutations of
algorithmic steps into a biologically admissible subset. The
outcome is a set of six 3D segmentation algorithms whose
accuracy will be evaluated.

Algorithmic steps. Table 2 summarizes imaging and geomet-
rical criteria for identifying cellular objects in the biological
experiments designed to study cell-scaffold interaction. Each
criterion is mapped to an algorithmic step based on an assumed
image property. The numerical values in the last geometrical
criterion are directly related to our 3D data. The values were
established based on a discussion between cell biologists and
computer scientists, since they depend on specific image ac-
quisition settings. The last column in Table 2 also provides
abbreviations for the five algorithmic steps that will be used
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Fig. 1. Shape variations of 2D middle cross sections of z-stacks representing cells on spun coat scaffold. The actin stained images are displayed by showing
all values above zero intensity.

Fig. 2. Statistics about the number of z-frames per z-stack over 10 scaffold types.

for constructing plausible 3D segmentation sequences (T, E, F,
L and M).

Order of algorithmic steps. Following the analysis in Sup-
plemental document A, we narrowed down the space of 120
possible segmentation sequences to two evaluated algorith-
mic sequences with and without geometric criteria: T→E and
T→E→F→L→M→L.

Constructed candidate algorithmic sequences. The two se-
quences above contain two parameters: the method for
estimating the intensity threshold in step T and the type of
morphological operation in step M. We followed the work in
Sezgin & Sankur (2004) that includes evaluation and ranking
of 40 methods for selecting an intensity threshold. The
accuracy evaluations in Sezgin & Sankur (2004) are based
on document images and ‘nondestructive testing images’
including laser scanning confocal microscopy images. We have

tested the performance of the top ranked methods from
the six categories of thresholding techniques by leveraging
implementations in Fiji (Schindelin et al., 2012) and our own
prototype implementations. Based on the published ranking
in Sezgin & Sankur (2004) and our visual performance
assessment using our data, we selected minimum error
thresholding (T1) and topological stable state thresholding (T2).

The two types of morphological operations in step M
are either Closing→Opening (M1) or Opening→Closing
(M2). Both thresholding and morphological parameters are
described in the Supplemental Document B. Based on the
above parameters, six segmentation algorithms for accuracy
evaluations are defined as summarized in Table 3.

Evaluation: accuracy and precision of 3D segmentation algorithms

In the absence of accurate first principle simulations, a
segmentation reference can be obtained via imaging phan-
toms or providing manual inputs. Unfortunately, imaging
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Table 2. Mapping criteria for identifying cellular objects to algorithmic steps of automated segmentation.

Criterion Criterion Segmentation
type description algorithmic step Abbreviation Comment

Imaging Signal from a cell is higher
than background noise

Intensity thresholding T All voxels with intensity above
the chosen threshold become
foreground, and all other
pixels become background

Imaging A cell touching the edge of
the field of view will be
discarded

Removal of objects touching the
image edges

E The shape of a cell touching the
edge of the field of view
cannot be determined since it
is cut off (part of the cell body
is outside the field of view)

Geometry A cell does not contain any
enclosed cavities

Spatial filling of cavities F Generally, cells are not expected
to have cavities within their
volume. However, it is
conceivable that a cell could
have a tunnel if it were
wrapped around a fibre, or a
void volume if it was wrapped
around a spherical object.

Geometry

(a) A cell shape is
continuous and does
not have disconnected
parts

(b) The cell will be the
largest object in an
image (background
debris in the image are
smaller than the cell)

Spatial- and intensity-based
removal of small objects

L

(a) Only one object should
remain after
segmentation

(b) The largest object in the
image that is not
touching the edge of the
image will also be the one
object remaining after
segmentation

Geometry Lessen contribution of image
features below 1 μm in
size

Surface smoothing of objects to
remove features < 1 μm in
size: closing, opening with 3
× 3 × 3 kernel that
corresponds to 0.72 μm (x) ×
0.72 μm (y) × 2.139 μm (z)

M Although cells have
sub-micrometre features, the
uncertainty in image data at
this size scale is not reliable,
could arise from noise or
debris and may be artifactual

phantom objects is very difficult because the properties of a
cell and surrounding media and of a phantom and surround-
ing media must match experiments. Further, the culture
environment, such as the type of scaffold in which the cell was
cultured, will affect the phantom imaging. Turning our at-
tention to manual inputs and empirical discrepancy methods
(Zhang, 1996; Cardoso & Corte-Real, 2005), a segmentation
reference would be established ideally by manual contouring
each 2D cross section of a z-stack while viewing the z-stack
from multiple viewpoints. This approach would require
manual input for approximately 64 230 frames in our dataset
(on average 125 cells/scaffold × 10 scaffolds × 51 frames/cell)
and is clearly labour-prohibitive.

In order to minimize the overall manual labour, we intro-
duce sampling and ‘minimum effort’ manual labelling using

orthogonal projections as illustrated in Figure 3. We proceeded
following the enumerated steps in Figure 3.

(1) Six automated algorithmic sequences are applied to all
1253 raw z-stacks to obtain segmented 3D volumes and
FRG voxel counts.

(2) A set of average and standard deviation values
{μk, σk} 6

k=1 is computed from the FRG voxel counts
per scaffold type and algorithmic sequence k.

(3) Each z-stack j is associated with score( j ) according to
Eq. (1):

Score (j) =
6∑

k=1

|μk − Ck (j)|
σk

, (1)
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Table 3. Summary of designed six segmentation algorithms.

Incorporated Threshold Morphological Segmentation
assumption(s) optimization optimization algorithm Abbreviation

Imaging Minimum error N/A T1→E A1
Topological stable state N/A T2→E A2

Imaging and geometry Minimum error Closing→Opening T1→E→F→L→M1→L A11
Opening→Closing T1→E→F→L→M2→L A12

Topological stable state Closing→Opening T2→E→F→L→M1→L A21
Opening→Closing T2→E→F→L→M2→L A22

Fig. 3. An overview of segmentation accuracy estimation. ‘Alg.’ stands for algorithm.

where C k ( j ) is the FRG voxel count obtained by the kth seg-
mentation algorithm for the jth z-stack. The score can be
viewed as a normalized residual subtracting the effect of six
algorithms on the FRG voxel count. Given the score per z-
stack, one can choose any number of samples between the
smallest to the largest normalized residuals that correspond to
the most representative of the most deviating cell in terms of
FRG voxel count. We chose to draw two extreme samples per
scaffold type according to Eq. (2):

j 1 = min
j

score ( j ) and j 2 = max
j

score ( j ) , (2)

where j 1 and j 2 are the indices of the two extreme samples
(global min and max residuals). Figure 4 illustrates the appli-
cation of steps 2 and 3 in Figure 3 (sampling methodology) to
the z-stacks from Collagen Fibrils scaffold.

(4) Three orthogonal max intensity projections (X-Y, X-
Z and Y-Z shown in Fig. 5) of each sampled z-stack are
presented to a human expert for manual contouring and

then processed into a connected 2D region by painting
interior pixels.

(5) After performing the six automated segmentations listed
in Table 3, each sampled z-stack is projected into the
three orthogonal planes and the segmented FRG pixels in
each projection are labelled into a connected 2D region.

(6) The manually and automatically obtained connected
regions A and B for the same orthogonal projection are
compared using the Dice similarity index (DSI) (Cha,
2007; Dice, 1945) defined in Eq. (3):

DSI (A, B) = 2 |A ∩ B|
|A| + |B| . (3)

The Dice index has been used frequently as a similarity
measure for spatial overlap and is related to the kappa statistic
for evaluating interrates agreement (Zou et al., 2004). Values
larger than 0.7 indicate a good spatial overlap (Zou et al.,
2004).

In order to determine the most accurate segmentation se-
quence, we compute the average of all Dice indices over all
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Fig. 4. Illustration of the sampling methodology applied to 114 z-stacks from Collagen Fibrils scaffold collection. The two red dots in the lower right panel
correspond to the two z-stacks selected for manual segmentation.

Fig. 5. Two examples of three orthogonal max intensity projections of
the min (top) and max (bottom) scores for microfibre scaffold. Left col-
umn shows the projections of the original z-stack. Right column shows
manually segmented three projections of the same z-stack. The ZX and
YZ projections have been scaled in the Z direction.

compared samples of segmentation references and their three
orthogonal projections, and then compare them across the
six candidate algorithmic sequences. To execute the overall
methodology in our specific case, the total number of segmen-
tation executions is equal 6 × 1253 × 9 = 67 662, for the
six algorithms in Table 3 to segment 1000+ z-stacks nine
times in order to find optimal threshold for the minimum error
thresholding (T1) and the topological stable state thresholding
(T2). The choice of nine threshold values for the optimization
was preceded by sample runs over 255 threshold values, and
selecting the maximum threshold value as the range.

Segmentation precision is established by four experts per-
forming manual segmentation of the same z-stacks. The re-
sulting segmentation masks are compared pairwise and the
average Dice index is reported as a measure of repeatability
(segmentation precision).

Verification: 3D segmentation results over a large number
of Z-stacks

The previously described methodology does not guarantee ac-
curate segmentation for every z-stack because it is computed
only over the sampled z-stacks and against three orthogonal
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Fig. 6. Annotations, three orthogonal projections of a z-stack with actin channel and PPS scaffold and the segmentation results obtained by executing
the top two algorithmic sequences. The cells of interest are denoted by a red box. The z-stack voxels here were projected as cubic voxels without being
scaled in the z-dimension. The size of the XY projections is 246 µm × 246 µm.

2D projections instead of full 3D segmentation. Our goal is to
use visual verification for detecting segmentation failures with
minimal human effort, and use the results for quality control
and computing the probability of segmentation failure.

To minimize human labour, we converted each 3D segmen-
tation into a mosaic of three orthogonal projections for 2D
visual verification shown in Figure 6. An expert browsed a
folder of such mosaic images and provided annotations classi-
fied according to the left column of Figure 6.

Furthermore, we converted segmentation results into a mul-
tiresolution pyramid of 3D meshes and designed a Web-based
visualization for 3D visual verification, as shown in Figure 7.
The 3D visualization allows a quick visual assessment of 3D
shapes. Additional sorting and colour-coding capabilities were
used for verifying shape accuracy and reporting annotation
labels.

Experimental results

We have followed the three parts of the 3D segmentation eval-
uation methodology (design, evaluate and verify) described in
Section 2 and applied them to 1253 cells.

Design: ordered segmentation sequences

The six candidates of 3D segmentation sequences were ap-
plied to the 1253 actin channel z-stacks to generate 7518
segmentation outcomes. We investigated two questions re-
lated to (i) the importance of each algorithmic step (or each
corresponding criterion) on the final FRG voxel counts and
(ii) the sensitivity of FRG counts per algorithmic step across
scaffold types.

Figure 8 shows the average FRG count after each step of
one of the sequences A12: T1→E→F→L→M2→L for the 10
scaffolds. We observed the largest negative rate after thresh-
olding T1 and the second largest rate after the step L (removal
of all connected regions but the largest one). Thus, T1 and
L steps are the most important in terms of FRG voxel count.
FRG voxel counts did not change significantly during the E
(removal around edges) and F (hole filling) steps.

For most of the segmentation steps, the lines in Figure 8
had similar slopes indicating that the six segmentation algo-
rithms were not sensitive to a scaffold type. Some degree of
scaffold sensitivity is seen after the step F (lines cross each
other between F and L). These observations are true across all
six segmentation algorithms.
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Fig. 7. A 3D Web-based visualization of 100+ z-stacks from the same
collagen scaffold type. The insets illustrate the interactivity during visual
inspection. The blue ball is used as a spatial scale.

Evaluation: manual segmentation precision

In order to establish a surrogate ‘truth’ via manual segmenta-
tion, we investigated precision of manual segmentation over
a set of three z-stacks (cells) segmented by four experts. We
chose cells on Collagen Gel scaffold because these cells have
been observed to have the largest 3D extent, which is impor-
tant in assessing 3D segmentation accuracy. Two cell biolo-
gists and two computer scientists manually segmented three
orthogonal projections per cell (nine images). Figure 9 sum-
marizes precision statistics per cell projection of Dice index.
The Dice index has an overall average precision of 0.82 and
standard deviation of 0.07. These results demonstrate consis-
tent enough manual segmentations (Dice index larger than
0.7). The fact that manual segmentations by four experts re-
sulted in an average Dice index of 0.82 indicates that image
data are of sufficient quality to be segmented and analysed.

Evaluation: automated segmentation accuracy

We evaluated segmentation accuracy based on 20 cells se-
lected according to the described sampling methodology (two
cells per scaffold). The cells were manually contoured using the
polygon drawing tool in ImageJ/Fiji (Schindelin et al., 2012).
The projections of the automated segmentation and the man-
ually contoured masks were compared by using the Dice in-
dex. The 20-cell collection was extended by additional 10 cells
drawn from various scaffolds (2 PPS, 1 MF, 1 CF, 1 CG, 2 MG,
2 NF and 1 NF+OS) and manually segmented. The additional
10 cells were selected and manually segmented through the
iterative process of imaging, evaluation and verification (qual-
ity control). The iterative process started with 1147 cells that
were reduced to 873 cells via quality control. In the next two

iterations, additional 106 cells were imaged yielding a total
of 1253 cells and 30 manually segmented cells. We inves-
tigated the question whether the accuracy estimations from
20 initially sampled cells are similar to the estimations from
30 sampled cells collected during the iterative quality control
process.

The Dice-index-based segmentation accuracies per segmen-
tation algorithm are shown in Figure 10 (top) for the case
of 20 and 30 cells. The two segmentation sequences with
only imaging criteria (A1: T1→E and A2: T2→E) performed
much worse than the algorithmic sequences with imaging and
geometric criteria. This result emphasized the importance of
mapping tacit geometric knowledge about cells into algorith-
mic steps. Next, the inclusion of M2 (Opening→Closing) led to
higher accuracy than the inclusion of M1 (Closing→Opening).
This indicates that the thresholding step did not remove voxels
with low intensity and hence M2 was preferred to shrink the
FRG. Finally, the comparison of average accuracies reported
for 20 and 30 cells are quite similar considering that they rep-
resent 1.6% (20/1253) and 2.4% (30/1253) of the cells. This
suggests that the 20 cells selected by the score-based sampling
be sufficient for evaluating the segmentation candidates.

Based on the results in Figure 10 (top), the seg-
mentation sequences A11: T1→E→F→L→M1→L, A12:
T1→E→F→L→M2→L and A22: T2→E→F→L→M2→L
delivered an average accuracy larger than 0.7 based on the
DSI. One would also like to know the robustness of accuracy
estimates to scaffold type. In other words, is there a need for a
scaffold-specific segmentation algorithm? Figure 10 (bottom)
shows the accuracy estimates per scaffold type. The results
demonstrate that the sequences A12 and A22 are consistently
more accurate across all scaffold types. Thus, one segmenta-
tion algorithm is sufficient for the segmentation task with
multiple scaffolds. Note that the segmentation accuracy esti-
mate for PPS scaffold is less than 0.7 because the automated
segmentation failed for one of the four selected PPS samples.
This points to the small sample size if the accuracy evaluation
is refocused from the entire collection of z-stacks to the sub-
set of z-stacks per scaffold. From a quality control perspective,
the best approach is to verify the segmentation accuracy es-
timates. Thus, we selected the top two performing sequences
A12 and A22 for additional visual verification.

Evaluation: efficiency

We have collected efficiency benchmarks on a desktop com-
puter (Apple Mac Pro with 3.2 GHz Quad-Core Intel Xeon
processor, and 16 GB of RAM). The execution was divided
into (i) finding optimal threshold according to one of the two
objective functions (implemented in Java language) and (ii)
applying all segmentation steps to obtain the segmentation
(implemented in C language). Thus, the steps T1 and T2 were
divided into the computations of threshold optimization O1
and O2 (threshold values between 1 and 9), and actual image
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Fig. 8. Average FRG voxel count per scaffold after executing each step of the segmentation sequence A12: T1→E→F→L→M2→L. The legend denotes
the scaffold types.

Fig. 9. Repeatability (precision) of manual segmentations estimated over three cell samples (S1, S2 and S3) times three orthogonal projection images
(XY, XZ and YZ) by four human subjects.

thresholding T (i.e. T1 = {O1, T}, T2 = {O2, T}). All runs were
executed using single threaded implementations.

Figure 11 (top) documents the relative efficiency of three
computations O1, O2 and T→E→F→L→M2→L that form
the top two segmentation sequences A12 and A22. The com-
putation O1 takes the highest percentage of time and there are
some dependencies of the percent execution times on the scaf-
fold type. The total times for O1, O2 and T→E→F→L→M2→L
were approximately 36.1, 8.6 and 6.2 h, respectively.

Figure 11 (bottom) shows the average heap memory size
allocated by Java virtual machine (JVM) and the used heap
memory size during threshold optimization computations
O1 and O2. The average heap memory allocation per z-stack
computed over all scaffolds for O1 is 0.46 GB (0.17 GB used
heap) and for O2 is 4.44 GB (1.97 used heap). Based on
Figure 11, we can conclude that the segmentation algorithms
using O1 (minimum error thresholding) were 4.2 times

slower (36.1/8.6) but consumed 9.65 times less memory
(4.44/0.46) than the segmentation algorithms using O2
(topological stable state thresholding).

Verification

The best performing two segmentation sequences A12 and
A22 were selected for visual verification. Table 4 provides a
summary of the verification annotations for the actin channel
z-stacks based on the mosaic of three orthogonal projections
illustrated in Figure 6.

Based on Table 4, the segmentation algorithm A12 re-
ported much fewer inaccurate shapes than the algorithm A22
(130 versus 233) which is consistent with the accuracy esti-
mates (Dice index 0.84 vs. 0.76). Thus, by proceeding with
the segmentation sequence A12: T1→E→F→L→M2→L,
we can assign the probabilities of segmentation failure 0.15
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Fig. 10. Top: Segmentation accuracy of six segmentation algorithms measured by average of the Dice index over 20 or 30 manually segmented cells.
Bottom: Segmentation accuracy estimations per scaffold type established based on 30 cells that were manually segmented.

((1253-1059)/1253) and success 0.85 (1059/1253) over all
10 scaffolds in addition to the accuracy, precision and effi-
ciency measurements. The probability of failure can be de-
composed into percent contributions from cell z-stack rejection
due to imaging 2.4%, missed cell region 2.7% and inaccurate
shape 10.3%.

Discussion

Input data

We have considered the segmentation task for various im-
age inputs in the context of cell volume quantification. Even
though 3D segmentation could be applied to actin or nu-
cleus or combined channel inputs, we focused on the actin
channel. The nucleus was also stained in each cell to con-
firm that the actin-based segmented object was a cell. In fact,
the nucleus presence confirms that objects are not dust or
debris. Staining cells in scaffolds is challenging since there
can be high background from fluorophore binding to the scaf-
fold matrix. In the present work, cells were imaged within 10

different scaffolds making it difficult to find an optimal stain
that had low-intensity background in all scaffolds. We selected
phalloidin (Alexa fluor 546 phalloidin) since phalloidin is a
small-molecule fungal toxin that binds specifically to actin and
would be expected to yield low-intensity background. Distance
was calibrated in confocal Z-stacks using a NIST-traceable
stage micrometre (Klarmann Rulings: Litchfield, NH, USA).
Additional calibration was performed by imaging fluorescent
spheres (FocalCheck Microspheres, 15 μm, LifeTech: Freder-
ick, MD, USA) to estimate shape uncertainty of the confocal
Z-scanning system.

Methodology

The choice of two samples per scaffold was motivated by
minimizing human labour. Contouring a minimum residual
(‘typical’) cell and a maximum residual (‘atypical’) cell in term
of its FRG voxel count was feasible over 10 scaffolds. Other
criteria can be imposed on the residual values to choose sam-
ple cells. Ideally, one would like to sample cells that would be
annotated as ‘rejected’ or ‘missed cell’ in proportions to the
cells with accurate and inaccurate shapes.
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Fig. 11. Top: Execution time efficiency for the top two performing sequences A12: T1→E→F→L→M2→L and A22: T2→E→F→L→M2→L decomposed
into O1, O2 and T→E→F→L→M2→L computation times. Bottom: Memory benchmarks of two threshold optimization computations using O1 �

minimum error thresholding and O2 � topological stable state thresholding approaches.

Though manual segmentation of each 2D frame in a Z-stack
would be the most accurate method to validate automated seg-
mentations, this approach is prohibitively labour-intensive. In
our case, the exhaustive manual segmentation would require
128 460 images in the entire dataset. If we chose only 2 cells
per scaffold × 10 scaffolds × 521 z-frames per cell (represent-
ing the sum of average number of z-frames per scaffold), then
the manual segmentation would still require 10 420 images.
By contrast, manual segmentation of a 2D X–Y projection
or a random z-frame is the most rapid approach, but does
not consider the 3D nature of the datasets. Thus, a compro-
mise was selected where X–Y, Z–Y and Y–Z projections (three
orthogonal maximum intensity projections) were manually
segmented. This approach minimizes manual labour while
also accounting for the 3D nature of the data. A more thor-
ough uncertainty analysis might be needed in the future to
understand the trade-offs between labour savings and accu-
racy of segmentation references.

Although we described the procedure for selecting the
autothresholding methods in ‘Design: construction of can-
didate 3d segmentation algorithms’ section, the choice of
only two methods was driven by combinatorial complexity
and required computational time. By adding another au-
tothresholding method, we would introduce 1253 z-stacks
× 9 threshold values = 11 277 additional segmentations to
find the optimal threshold. Given our focus on evaluation
methodology rather than on computational speed, we did not
want to exceed more than 2 days of computations to obtain
results for the current total number of segmentations (67 662
segmentations �42.3 h). However, it is important to state that
the described methodology is computationally demanding as
the parameter search space of autothresholding methods and
their threshold values could be very large.

Another frequently reported measure of segmentation qual-
ity is its robustness to background noise and various arte-
facts. In our case, the noise robustness has been addressed by
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Table 4. Summary of visual verification for the actin channel and the two segmentation sequences that differ by the thresholding step (A12 contains
minimum error and A22 contains topological stable state thresholding step).

Number of Number of Number of
missed cells inaccurate shapes usable cells

Scaffold
Number of

imaged cells
Number of

rejected cells A12 A22 A12 A22 A12 A22

SC 139 8 4 3 16 16 111 112
SC+OS 122 3 0 0 14 12 105 107
NF 122 1 7 7 11 8 103 106
NF+OS 113 0 4 5 6 10 103 98
MF 165 14 4 5 40 45 107 101
PPS 136 1 10 11 18 85 107 39
MG 115 1 0 0 0 0 114 114
FG 113 0 0 0 13 20 100 93
CG 114 0 0 0 12 24 102 90
CF 114 2 5 4 0 13 107 95
Total 1253 30 34 35 130 233 1059 955

threshold optimization. Although we used two of many pub-
lished threshold optimization techniques (Sezgin & Sankur,
2004) that had been evaluated, we performed additional ex-
periments to verify the noise robustness of the segmentation
sequences. We generated synthetic cell models as a sphere
with the radius of 50 pixels and a prolate spheroid with the
parameters [a = 25, b = 25, c = 50]. They were represented
by the z-stack dimensions of 128 × 128 × 110 voxels. For
each cell model, we added noise following Uniform and Gaus-
sian PDF with either maximum or standard deviation values
between 10 and 130 in the increments of 10. As expected for
8 bit per pixel z-stacks, the estimated volume (FRG count) by
the method A12 starts to deviate from the reference value at
130 for Uniform PDF and at 70 for Gaussian PDF. We did not
simulate various artefacts such as debris, cells leaving the FOV
or touching cells because the simulation models would have
to be developed and validated, and their parameters estimated
from the data.

Experimental results

We observed consistency of the segmentation accuracy re-
sults measured for A12: T1→E→F→L→M2→L (Dice index
of 0.84 and the probability of segmentation success of 0.85).
The segmentation accuracy evaluation and visual verification
represent both quantitative and qualitative measurement ap-
proaches. The quantitative approach, comparing manual and
automated segmentation, is based on methods for selecting
representative cell samples from the cell populations and for
evaluating the accuracy of sample segmentations at pixel or
voxel level. The qualitative approach, a visual inspection of all
segmented cells for quality control, makes use of 2D and 3D
tools (see Figs. 6 and 7), and an expert’s evaluation based on
the tacit rules for annotation categories. There is more ambi-
guity in annotating ‘inaccurate shape’ than ‘rejected cells”’

or ‘missed cells’, because the visual tolerance in defining ‘in-
accurate shape’ is hard to quantify. In our work, the visual
tolerance was following approximately the 75% rule used in
Lou et al. (2014). In other words, a cell is segmented accu-
rately enough if the automated segmentation has at least 75%
overlap with the expert’s perceptual segmentation.

Conclusions

We have designed a methodology for evaluating automated
3D segmentation results over a large number of z-stacks. The
methodology is generalizable to a class of problems where
imaging and biological criteria can be translated into a fi-
nite set of segmentation algorithms. The key contributions
of our work are in (1) designing and constructing candidate
segmentation algorithms, (2) evaluating segmentation preci-
sion, accuracy and efficiency and (3) verifying segmentation
success visually. We constructed and evaluated six 3D seg-
mentation algorithms, and visually verified two of them to
deliver 1059 high-quality segmentations from 1253 z-stacks.
The most accurate 3D segmentation algorithm achieved an
average precision of 0.82 and accuracy of 0.84 measured by
the DSI, the probability of segmentation success 0.85 based on
visual verification and the computational efficiency of 42.3 h
to process all z-stacks. While the most accurate segmentation
was 4.2 times slower than the second most accurate algo-
rithm, it consumed on average 9.65 times less memory per
z-stack segmentation.

We plan to disseminate the raw z-stacks and their segmen-
tations via a Web application that serves the purpose of data
subsetting, as well as 3D browsing. We reached our goal of ob-
taining at least 100 cells per scaffold after visual verification.
This will enable completion of the study of the effects of the
10 scaffolds on the 3D shape of stem cells at unprecedented
statistical confidence.
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