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Abstract. There is a need for tools to classify cells based on their 3D shape. Cells
exist in vivo in 3D, cells are frequently cultured within 3D scaffolds in vitro, and 3D
scaffolds are used for cell delivery in tissue engineering therapies. Recent work indicates
that the physical structure of a tissue engineering scaffold can direct stem cell function
by driving stem cells into morphologies that induce their differentiation. Thus, we have
developed a rapid method for classifying cells based on their 3D shape. First, random
lines are intersected with 3D Z-stacks of confocal images of stem cells. The intersection
lengths are stored in histograms, which are then used to train a Support Vector Machine
(SVM) learning algorithm to distinguish between stem cells cultured on differentiation-
inducing 3D scaffolds and those cultured on non-differentiating flat substrates. The
trained SVM is able to properly classify the “new” query cells over 80% of the time.
The algorithm is easily parallelizable and we demonstrate its implementation on a
commodity Graphics Processing Unit (GPU). Use of a GPU to run the algorithm
increases throughput by over 100-fold as compared to use of a CPU. The algorithm
is also progressive, providing an approximate answer quickly and refining the answer
over time. This allows further increase in the throughput of the algorithm by allowing
the SVM classification scheme to terminate early if it becomes confident enough of
the class of the cell being analyzed. These results demonstrate a rapid method for
classifying stem cells based on their 3D shape that can be used by tissue engineers for
identifying 3D tissue scaffold structures that drive stem cells into shapes that correlate
with differentiation.

PACS numbers: 87.57.N-, 87.64.mk
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1. Introduction

There is a need for tools to classify cells based on their 3D shape. Since there is a

well-established link between cell shape and cell function [4, 10, 19, 26, 27, 32, 43, 46],

cell shape is frequently used to assess cell state. However, cell culture experiments

are typically performed in a 2D format where cells are cultured on flat tissue culture

polystyrene plates and the cell shape is assessed using 2D imaging and image analysis.

In contrast, cells in vivo reside in a 3D microenvironment composed of an extracellular

matrix. 3D scaffolds are being advanced for in vitro culture in order to mimic the

in vivo environment and are also being used for cell delivery in tissue engineering

therapies [28]. Thus, 3D cell shape analysis is required to understand how 3D scaffold

microenvironments influence cell shape and function.

Herein, we introduce a machine learning approach for classifying stem cells based

on their 3D shape. Lines are intersected with Z-stacks of 3D confocal images of stem

cells and the intersection lengths are used to generate a histogram. The histograms are

used to train a Support Vector Machine (SVM) learning algorithm to recognize stem

cells cultured on differentiation-inducing 3D scaffolds.

Tissue engineering has been defined as an “interdisciplinary field that applies the

principles of engineering and the life sciences toward the development of biological

substitutes that restore, maintain, or improve tissue or whole organ function” [21].

Recent advances include many tissues and organs, including heart [34], bladder [5], and

urethra [37].

The two critical parts of a tissue-engineered implant are stem cells and 3D tissue

scaffolds [28]. Stem cells have the ability to differentiate down multiple lineages for

regeneration of different organs and tissues. Tissue scaffolds are porous structures,

made from polymers, ceramics or natural materials such as collagen, that provide a 3D

template for stem cells to adhere to, differentiate, and generate new tissue.

Traditionally, control of cell function has been considered in terms of soluble

factors, biochemical signaling and paracrine effects (one cell secretes a factor that

stimulates nearby cells). However, recent work shows that the physical properties of the

cellular microenvironment can also influence cell function. In particular, the chemistry

[6, 24, 36], mechanics [18, 35], and structure [13, 26, 27] of the cell niche are important.

The cell niche is the local microenvironment in which individual cells reside, and in

vivo the cell niche is composed of extracellular matrix proteins such as collagen and

fibronectin. A primary goal in regenerative medicine is to engineer scaffolds to provide

a 3D microenvironment that enhances tissue regeneration.

Human bone marrow stromal cells (hBMSCs) are a mix of cells isolated from

bone marrow which contains a population of multipotent adult skeletal stem cells that

can differentiate into bone, fat and cartilage [14]. When cultured with appropriate

stimuli, such as differentiating supplements, hBMSCs start down a pathway going from

a multipotent stem cell towards a more differentiated cell type, such as an osteoblast,

chondrocyte or adipocyte.
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Previously, we demonstrated that 3D PCL (poly(ε-caprolactone)) nanofiber

scaffolds drive hBMSCs into an elongated and highly-branched morphology that induces

them to differentiate down an osteogenic lineage [26]. Osteogenic differentiation on

nanofibers was marked by calcium deposition (positive Alizarin red staining) and a gene

expression profile that matched control hBMSCs incubated with osteogenic supplements

(measured by microarray analysis). Electrospinning is a process for making porous

polymer scaffolds that have a nanofibrous structure that mimicks extracellular matrix

[44]. When hBMSCs were cultured on 2D flat PCL films (spun-coat), they assumed a

well-spread, polygonal morphology, that supported cell proliferation but did not induce

osteogenic differentiation. Spin-coating is a process for applying uniform, polymeric,

flat films to substrates where centrifugal forces are used to spread polymer solutions.

Electrospinning and spin-coating can be used to make nanofiber scaffolds and flat

films, respectively, from the same material, PCL. These results indicated that the

structure of the scaffold can be designed to drive cells into morphologies that direct

their differentiation down a desired lineage. Images of the 2D films, 3D nanofibers and

hBMSCs are given in figure 1.

Figure 1: Left to right: SEM (Scanning Electron Micrograph) of 2D PCL spun-coat

film, an hBMSC cultured on a 2D PCL spun-coat film, SEM of 3D PCL nanofiber

scaffold, and an hBMSC cultured in a 3D PCL nanofiber scaffold. hBMSC images are

reconstructed from 3D confocal fluorescent scans of fluorescently stained actin.

The use of scaffold structure to control stem cell function is attractive because

scaffold structure is stable, has a low regulatory burden, and is relatively easy

and inexpensive to control [31]. Covalent functionalization of scaffold devices with

biochemically active molecules such as cell-adhesive peptides or growth factors is

difficult, hard to characterize, and expensive. Loading scaffolds with growth factors to

guide regeneration is challenging because proteins are hard to manufacture and highly

unstable. In addition, including biomolecules or growth factors in a device increases the

regulatory costs.

Cell shape and function are known to be intricately linked [10, 19] and recent

work has shown that this premise holds true for hBMSCs [26, 27, 32, 43]. hBMSC

differentiation can be directed by properly tuning the cellular microenvironment to

drive the cells into the proper shape. Cell shape has the added value of being an

early predictor of cell fate. Biochemical assays require weeks or months of culture for

differentiation markers to become detectable, whereas cells attain a stable morphology

within a day of culture that can be an indicator for their future behavior [43]. Though
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previous methods for assessing cell shape have focused on 2D cell shape data [17, 43],

tissue engineering aims to use 3D scaffolds to control cell shape function. Culture of

cells in complex 3D microenvironments is likely to require 3D cell shape analysis in

order to establish meaningful relationships. Rapid throughput is also desirable due to

the large number of parameters that must be tested to identify scaffolds that promote

the desired biologic response [30, 40].

In addition to the tissue engineering field, rapid 3D methods for measuring cell

shape are likely to be needed by the pharmaceutical industry as it moves towards 3D

scaffold systems for drug screening [11, 41]. 3D in vitro culture models are less expensive

than animal models and may be more predictive of human clinical outcomes. Drug

screens typically involve thousands of compounds and cell shape analysis is a parameter

frequently used to determine toxicity response. Thus, high-content 3D methods for cell

shape classification are required if pharma is to use 3D scaffold technologies to improve

the predictive nature of in vitro testing [25, 45]. Herein, we have developed a machine-

learning-based algorithm that can rapidly classify stem cells based on their 3D shape.

The remainder of this paper is organized as follows. In Section 2, we give an

overview of the algorithm and describe some parameters that need to be set. In Section

3, we describe how we characterize a cell by intersecting it with random lines. In Section

4, we describe several ways in which our algorithm can be parallelized for implementation

on a GPU (Graphics Processing Unit). We present timing and accuracy results in

Section 5. Finally, we discuss our results and applications of our algorithm in Section

6, provide suggestions for future work in Section 7, and give our conclusions in Section

8.

2. Technical Approach

hBMSCs (human Bone Marrow Stromal Cells) were cultured on two types of substrates:

a spun-coat substrate with a flat, 2D surface, and a nanofiber substrate with a

fibrous, 3D surface. hBMSCs cultured on the nanofiber substrate underwent osteogenic

differentiation and adopted a more spikey, branched appearance, while hBMSCs cultured

on the spun-coat substrate did not differentiate and retained a smoother appearance.

Our goal is to use 3D geometric properties of the hBMSCs to distinguish between

hBMSCs cultured on the nanofiber substrate and hBMSCs cultured on the spun-coat

substrate. Many methods for classifying three-dimensional objects can be found in the

literature. For a survey of these methods, see Cardone et al. [8].

Our general workflow is as follows. First, confocal microscopy was used to collect

3D image data sets of individual cells. Next, we use an algorithm to intersect each

cell with many lines in 3D and record the lengths of each of the partial line segments

that run through the interior of the cell. From this line length data, we generate a

line length histogram describing each cell. Finally, we use the histograms to train a

machine learning technique which is used to classify new cells as coming from a 3D,

fibrous nanofiber scaffold or a 2D, flat spun-coat film. An overview of this pipeline is
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given in figure 2.

Figure 2: Overview of our cell data processing pipeline.

The 3D cell images that were analyzed in the current work were collected in previous

experiments described in Kumar et al. (2011) [26]. Primary human bone marrow

stromal cells (hBMSCs) isolated from iliac crest of healthy donors were cultured for

1 day on PCL (poly(ε-caprolactone)) spun-coat films or PCL nanofiber scaffolds. 2D

PCL spun-coat films were made by spin-coating. 3D PCL nanofibers were made by

electrospinning. Nanofiber diameter was measured by imaging with scanning electron

microscopy (mean nanofiber diameter = 910 nm, S.D. = 526 nm, n = 100). 2D spun-

coat films and 3D nanofiber scaffolds were made from the same material, PCL, so that

the effects of scaffold chemistry could be discerned from effects of scaffold structure. For

3D imaging, cellular actin was stained with Alexa-Fluor-546-phalloidin and imaged by

confocal fluorescence microscopy. Z-stacks of images of individual hBMSCs on spun-coat

films for nanofiber scaffolds were collected using a 1 µm step size.

In Kumar et al. (2011) [26], osteogenic differentiation was assessed by measuring

matrix calcification and by measuring gene expression by mRNA microarrays. hBMSCs

cultured on PCL nanofibers underwent osteogenic differentiation while hBMSCs on

PCL spun-coat films did not. Thus, it was not necessary to measure differentiation

by osteogenic markers for the current manuscript since this work has already been

published for the confocal Z-stack data sets analyzed herein. The current work focuses

on classifying these previously collected hBMSC confocal Z-stacks by their 3D cell shape

(not 2D shape analysis as was previously performed) using a new SVM algorithm.

Previous analysis of hBMSC shape using traditional 2D shape analysis tools

demonstrated that hBMSCs on 3D nanofiber scaffolds have a more branched structure

than hBMSCs on the 2D spun-coat films [26]. We want to leverage this shape difference

to distinguish between hBMSCs that were cultured on the different substrates. To

accomplish this, we first intersect the cells with a set of randomly generated lines. We

measure the lengths of the portions of the lines that passed through the cell and put these

lengths into histograms. Our hypothesis was that the cells on the nanofiber substrates



Parallel Geometric Classification of Stem Cells by Their 3D Morphology 6

would have more short segments since these cells had more long, thin branches. Analysis

of the average segment length for the two cell types supports this hypothesis.

A question that arises is how to choose the random lines that are used to intersect

with the cells. We want a method of line selection whose results do not depend on

cell orientation. We have tried two different methods of line selection. The first is to

select pairs of points on a bounding sphere around the cell and generate lines that pass

through both points. The results of this method should converge to the same result

regardless of the cell’s orientation. The second method is to select pairs of points on

the curved surface of a cylinder rather than the surface of a sphere. This method takes

advantage of the particular structure of our data set.

To perform our algorithm we need to classify each voxel in the three-dimensional

data set as either being inside or outside the cell. Each voxel contains an integer that

represents how much light was received from that location by the microscope. These

values are not calibrated to any particular units. The fluorescently stained cell gives

off a large amount of light from locations that are inside the cell, while only a small

amount of noise is received from locations outside the cell. We classify the voxels by

selecting a threshold value and labeling voxels with values below this threshold as being

outside the cell and voxels with values above this threshold as being inside the cell. If

the threshold value is chosen too low then noise in the data set may be labeled as part

of the cell. If the threshold value is chosen too high, then significant geometric features

of the cell may be eroded. We therefore expect that, as the threshold value is increased,

the performance of the algorithm will improve up to a certain point and then worsen.

The selection of the threshold value can be considered part of the training phase of the

algorithm and the value can be chosen based on the training data set. For this work,

the threshold value was chosen by testing a series of different values and selecting the

one that produces the greatest percentage of correct classification. Based on the data

presented in Table 1, we selected a threshold value of 600.

Threshold 300 400 500 600 700 800 900 1000

% Correct 75.6 78.0 82.9 82.9 82.9 75.6 75.6 73.2

Table 1: Percent correct classification with various threshold values. The voxels in the

data set contained values in the range [0, 4095], 12 bits of precision. Parameters used

were Cylinder method, 106 lines intersected, minimum gap length of 8 µm, polynomial

SVM, ten-fold cross validation (see Section 5.2).

During data collection the confocal microscope images were each focused on a single

cell, but often captured portions of other cells. To correct for this we clean the data

volumes by identifying connected components and throwing out all components except

the largest. We also fill in any holes (empty regions completely surrounded by cell

voxels) we find in the component.

After these steps there can still be some noise in the data set that causes voxels that

should be inside the cell to be labeled as empty space. In our line shooting algorithm
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we correct this by ignoring gaps in the line segments that are smaller than a certain

length, instead counting it as one continuous segment. If this minimum gap length is

set too low then it will allow gaps that are actually noise or artifacts, while if it is

set too high then it will exclude gaps that are actually part of the cell geometry. We

therefore expect that, as the minimum gap length is increased, the performance of the

algorithm will improve up to a certain point and then worsen. As with the previously

mentioned threshold value, the selection of the minimum gap length can be considered

part of the training phase of the algorithm and can be performed based on the training

data set. For this work, we chose our value for the minimum gap length by once again

testing a series of values and selecting the one that produced the greatest percentage of

correct classification. Based on the data presented in Table 2, we selected a minimum

gap length of 8 µm.

Min Gap Length (µm) 1 3 5 7 8 9 11 13 15

% Correct 73.2 78.0 82.9 82.9 82.9 82.9 82.9 80.5 78.0

Table 2: Percent correct classification with various minimum gap lengths. Parameters

used were Cylinder method, 106 lines intersected, threshold value of 600, polynomial

SVM, ten-fold cross validation (see Section 5.2).

We store the lengths of the segments which pass through a cell in a histogram with

256 bins. We found that this number was large enough that increasing it did not seem

to increase the classification accuracy. To improve performance, it may be useful to

experimentally determine the lowest number of histogram bins required to still achieve

good classification results. It may also be useful to experiment with using histograms

with non-uniform bins.

3. Geometric Characterization of the Cell

As described above, our analysis of the cells involves generating a set of random lines

that intersect each cell. The lines were generated using several methods. In the first

method, we pick pairs of points on the surface of a bounding sphere and generate a line

that intersects these points. This is the method used by Juba and Varshney [22] and is

described by Li et al. [29] as the Chord Model. Uniformly distributed points (x, y, z) on

a sphere can be generated from pairs (u, θ) of uniformly distributed random numbers

by using the formula

(x, y, z) = ((1 − u2)
1
2 cos θ, (1 − u2)

1
2 sin θ, u) (1)

where u is in [−1, 1] and θ is in [0, 2π) [47]. A slightly more computationally efficient

formula is given by Rovira et al. [38] which generates the points (x, y, z) from pairs
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(ξ1, ξ2) of uniformly distributed random numbers

cos θ = 1 − 2 ∗ ξ1
sin θ =

√
1 − (cos θ)2

ϕ = 2 ∗ π ∗ ξ2
(x, y, z) = (sin θ ∗ sinϕ, cos θ, sin θ ∗ cosϕ)

(2)

where ξ1 and ξ2 are in [0, 1). Points generated by either of these methods have equal

density over the entire surface of the sphere and are not clustered at the poles.

In the second method, we pick pairs of points on the curved surface of a cylinder

and generate a line that intersects these points. The cylinder is oriented such that the

central axis is perpendicular to the plane of the 2D microscope images that were stacked

together to form the 3D volume. Each of the two points that define the line is defined

by an angle θ around the circumference of the cylinder and a height z along the central

axis. This is illustrated in Figure 3. The formula for points (x, y, z) on the curved

surface of a cylinder is

(x, y, z) = (cos θ, sin θ, z) (3)

where z is in [−1, 1] and θ is in [0, 2π).

C
ount

Segment Length (um)

Figure 3: Top-down view of lines defined by points on a cylinder enclosing a cell. The

lengths of the intersections of these lines with the cell are stored in a histogram.

Both of these line generation methods require a set of uniformly distributed random

numbers. Typically a pseudo-random sequence of random numbers is used for this

purpose. However, it has been shown that a so-called quasi-random sequence (also

called a low-discrepancy sequence) has better properties, including a lower error bound in

numeric integration [29]. For this work, we use the Niederreiter quasi-random sequence

[7], which can be found in the GNU Scientific Library [1]. For Equation 1, we generate

quasi-random points (a, b, c, d) in four dimensions and use the first and second coordinate

pairs (a, b) and (c, d) to generate the (u1, θ1) and (u2, θ2). For Equation 3, we generate

quasi-random points (a, b, c) in three dimensions and use the three coordinates for θ1,

θ2, and z (in our implementation both points of the line are at the same altitude z).

The sphere method of generating lines is good for general data sets in which no

direction should be treated differently than any other. In the data we are working with,
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however, most of the cell structure variation is in the xy plane of the microscope images.

We therefore chose to generate lines using the cylinder method with the central axis of

the cylinder aligned with the z axis of the image stack when computing most of the

results reported in this paper. A comparison of the performance between these two

methods is given in Section 5.2.

Once a line is generated, the next step is to compute its intersections with the cell.

We do this by stepping along the line at uniform intervals and at each point checking

if that point is inside or outside the cell. Initially, the line starts outside the cell. If

two adjacent points are inside and outside the cell respectively (or vice versa), we know

that we have either entered or left the cell. Whenever we leave the cell we compute the

length of the line segment that was inside the cell and store this in a histogram.

4. High-Throughput Processing

GPU

Multiprocessor

Device Memory

Shared Memory

Multiprocessor

Shared Memory

Multiprocessor

Shared Memory

...

= Stream Processor

Figure 4: GPU memory and multiprocessor layout.

A GPU (Graphics Processing Unit) is a SIMT (Single Instruction, Multiple Thread)

processor capable of executing many identical instruction threads in parallel on different

sets of input data. It has a large number of stream processors, each with some local

memory and registers. These are grouped into several multiprocessors, each containing

a small amount of fast memory that is shared within the multiprocessor. It also has a

large amount of slower memory that is accessible by all thread processors. A diagram

of the processors and memory is given in Figure 4.

The SIMT architecture is similar to the traditional SIMD (Single Instruction,

Multiple Data) except that in SIMT, threads can take diverging branches. On the

NVIDIA CUDA [2] capable hardware on which we implemented our algorithm, threads

are divided into groups of 32 called warps. Threads within a warp cannot execute

different instructions at the same time. If threads in a warp go down diverging branches,

the GPU will first disable all the threads going down the second branch and execute

the instructions of the first branch, then vice versa. Greater efficiency can therefore

be achieved by ensuring that as often as possible all threads in a warp follow the same

branches. Threads in different warps are free to go down different branches without

penalty.
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If an algorithm can be mapped to this architecture, the GPU can generally execute

the algorithm much faster than it could be executed on a CPU. This is because the

SIMT nature of the GPU allows more of its transistors to be dedicated to arithmetic

operations rather than tasks such as caching and flow control.

CPU Memory CPU Memory

GPU Memory GPU MemoryGPU

Cell Volume

Cell Volume Trace Line

Trace Line

Trace Line

...

Histogram

Histogram

Figure 5: Use of CPU and GPU to generate segment length histograms from cell volumes

using the Atomic Operations algorithm.

CPU Memory CPU Memory

GPU Memory GPU MemoryGPU

Cell Volume

Cell Volume Histograms

Histogram

Trace Line

Trace Line

Trace Line

...

GPU MemoryGPU

Reduction

Histogram

Figure 6: Use of CPU and GPU to generate segment length histograms from cell volumes

using the Parallel Reduction algorithm.

We mapped our line intersection algorithm to the GPU by using one thread to

compute the intersections of each line with the cell. A straightforward implementation

of this algorithm involves each thread writing the lengths of the intersecting segments

into a shared histogram (see Figure 5). However, this requires synchronization of the

threads or the use of slow atomic operations. One way around this requirement is to

give each thread its own 256 bin histogram to store its results in, and then merge the

histograms at the end using a parallel reduction operation (see Figure 6). This approach
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CPU Memory CPU Memory CPU Memory

GPU Memory GPU MemoryGPU

CPU

Cell Volume

Cell Volume Segment
Length List

Segment
Length List Count

Segment
Lengths

Histogram

Trace Line

Trace Line

Trace Line

...

Figure 7: Use of CPU and GPU to generate segment length histograms from cell volumes

using the Segment Length List algorithm.

is wasteful, however, since each thread would likely write only a few segment lengths

into each histogram. Instead, each thread writes its intersected segment lengths into a

fixed size list, and simply ignores any intersected segments that occur after the list is

full. We found that a list of length 10 is sufficient to produce results that are almost

identical to the CPU version of the algorithm. Once the lists are constructed they are

read back to the CPU and the lengths are counted to generate the histogram (see Figure

7). A comparison of performance data for these three algorithms is given in Section 5.

5. Results

5.1. Running Time

We tested our algorithm on a data set collected by Kumar et al. [26] consisting of 21 cells

grown on a fibrous nanofiber substrate and 20 cells grown on a flat spun-coat substrate.

For each cell, we had a stack of 12-bit grayscale confocal microscopy images of resolution

2048 × 2048 which we merged together into a single volume. The number of images in

each stack varied from 11 to 20. The dimensions of each voxel were approximately

0.1 × 0.1 × 1 (in µm).

We measured the performance of our algorithms when intersecting a cell with

various numbers of lines, ranging from 103 to 106. The results are given in Table 3. For

each algorithm the first step was to generate the random lines with which to intersect

the cell. This step is independent of the data and can be done once as a pre-process,

with the same set of lines then being used to intersect each cell. The line generation

time is therefore not included in the running times for the algorithms.

For each number of lines, we measured the times the algorithms took to compute the

intersection counts for a single cell both on the CPU and in the parallel implementations

on the GPU. The timing for each algorithm is broken down into the steps listed in Figures
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Num lines 103 104 105 106

Generate lines (ms) 0.1408 1.251 13.08 129.6

CPU Algorithm

Total time (ms) 200.3 2030 19970 200100

GPU Algorithm – Atomic

Total time (ms) 12.25 25.92 191.1 1863

Speedup factor 16.35 78.32 104.5 107.4

GPU Algorithm – Reduction

Trace lines (ms) 0.4551 0.5024 1.594 15.51

Do reduction (ms) 21.72 36.76 210.5 1987

Total time (ms) 22.62 38.98 227.6 2147

Speedup factor 8.855 52.08 87.74 93.20

GPU Algorithm – Lists

Trace lines (ms) 0.3208 0.4902 1.458 14.97

Count lengths (ms) 11.35 24.36 180.3 1748

Total time (ms) 12.12 26.53 197.1 1908

Speedup factor 16.53 76.52 101.3 104.9

Table 3: Results of intersecting a cell with different numbers of lines. The CPU

algorithm was run on an Intel Xeon X5260 (using only one core) with 10 GB of RAM.

The GPU algorithms were run on an NVIDIA Tesla C2050. The dimensions of the cell

volume data were 2048×2048×20. The threshold was 600 and the minimum gap length

was 8 µm. The random lines were generated using the Cylinder method— running times

when using the Sphere method were very similar.

5, 6, and 7. For the GPU Reduction algorithm we measured the time required to send

the lines to the GPU and trace them (“Trace lines”), as well as the time required to

perform the parallel reduction operation and read back the resulting histogram (“Do

reduction”), which was implemented using the CUDA Thrust library [20]. For the GPU

Lists algorithm we again measured the time required to send the lines to the GPU and

trace them (“Trace lines”), as well as the time required to read the segment length lists

back to the CPU and convert them into a histogram (“Count lengths”). The total time

includes these times as well as the time required for any other miscellaneous tasks. In

addition to these times, all algorithms took about 4520 ms to load the cell volume data

from the disk. We also list speedup factors which show how many times faster each

parallel GPU implementation is over the serial implementation on the CPU. Note that

the best parallel GPU implementation can be over two orders of magnitude faster than

the serial CPU implementation.

On the current-generation GPU listed in the caption of Table 3, the best performing

algorithm was Atomic, followed closely by Lists. In addition to this GPU, we also tested

the algorithms on several older-generation GPUs, an NVIDIA Quadro NVS 285 and an
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NVIDIA Quadro NVS 290. On these GPUs the Lists algorithm was actually slightly

faster than Atomic. We suspect the reason for this is that the implementation of atomic

operations has been improved in the current generation of GPUs.

5.2. Validation

+

-Nanofiber

Spun-Coat

Figure 8: Trained Support Vector Machine (SVM). The hyperplane that separates the

two classes of histograms is the zero level-set of a decision function that divides space

into a positive half and a negative half. Histograms that fall in the positive half are

labeled as one class (here, Nanofiber) while histograms that fall in the negative half

are labeled as the other (here, Spun Coat). Note that this figure is an example only—

it does not depict the actual hyperplane and the positions of the cell images do not

correspond to their actual positions in the feature space.

Once the cell histograms have been produced they are either used to train a Support

Vector Machine (SVM) classifier (if they are in the training set) or are classified by

a trained SVM. The training phase of the SVM treats each histogram as a point

in high-dimensional space and tries to compute the hyperplane that best separates

the points corresponding to differentiated cells and the points corresponding to non-

differentiated cells. The orientation of the hyperplane is determined only by those

points close to it, which are referred to as the support vector. Once the algorithm is

trained, additional histograms can be classified as being cultured on a differentiating (3D

nanofiber scaffold) or non-differentiating (2D flat spun-coat film) substrate by testing

where the corresponding point lies in relation to the hyperplane. An illustration of a

trained SVM is given in Figure 8. Additional information on Support Vector Machines

can be found by referring to Cortes and Vapnik [12].

For this work we used the SVM implementation in LIBSVM [9] version 3.12 with

all options set to default (degree = 3, gamma = 1/256, coef0 = 0) except for Kernel

Type, which we set to Polynomial. Training a polynomial SVM on our test data set of

41 cell histograms took about 9.3 ms. Once the SVM is trained, new cell histograms

can be classified in about 4.4 ms each.

In addition to running time, we also measured the classification correctness of our

algorithm when intersecting the cells with different numbers of lines. To compute the
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percentage of correct classification for each trial we used 10-fold cross validation. This

means that we randomly distributed the 41 cells of the data set into 10 groups of

approximately equal size, trained the machine learning algorithm on 9 of the groups,

and measured the percent correct classification of the 10th. An example of one fold is

given in Table 4. Note that the numbers of Nanofiber and Spun-Coat cells in a fold will

not necessarily be equal. This was repeated 10 times, each time using a different group

to test the classification correctness. The percent correct classification of all the groups

was then averaged. The average percent correct classifications are given in Figure 9.

Actual Nanofiber Nanofiber Spun-Coat Spun-Coat

Classified as Nanofiber Spun-Coat Spun-Coat Spun-Coat

Table 4: Example of one fold of the validation of a trained SVM model. The lines were

generated using the Cylinder method and intersected using the GPU Lists algorithm

with a threshold of 600 and a minimum gap length of 8 µm. An SVM was trained

with 19 nanofiber cells and 18 spun-coat cells. An additional 2 nanofiber cells and 2

spun-coat cells were set aside to be classified by the model. Of these 4 cells, 3 were

classified correctly.

Figure 9: Percent correct classification of differentiated and non-differentiated stem cells.

The lines were generated using the Cylinder method (left) and Sphere method (right),

and intersected using the GPU Lists algorithm with a threshold of 600 and a minimum

gap length of 8 µm.

We found that, for this data set, we get better cell classification results with the

Cylinder method than with the Sphere method. When using 104 lines, the Cylinder
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method gives its maximum performance of 82.9% correct, while the Sphere method

gives only 78.0% correct. With 106 lines, the Sphere method gives only 80.5% correct.

This was expected, as for this data set most of the cell structure variation is in the xy

plane, and so would be more efficiently detected by using lines which are more closely

aligned with this plane.

This data demonstrates the progressive nature of our algorithm. For a small number

of lines the classification accuracy is about 50%, which is what would be expected from

random guessing. As the number of intersected lines increases, so does the classification

accuracy until it levels off at a maximum. If, after a certain number of lines have been

intersected, the user desires additional accuracy, then the already-computed lines can

be re-used and only the additional lines will need to be intersected. The algorithm

can therefore provide rough results quickly, which can then be improved to the desired

accuracy with additional running time.

6. Discussion

We present an algorithm that can classify, with over 80% efficacy, hBMSCs (human

bone marrow stromal cells) as having been grown on a differentiation-inducing 3D PCL

nanofiber scaffold or on a non-differentiation-inducing 2D PCL spun-coat film. Although

the algorithm has been tested on a relatively small data set of 41 z-stacks in the current

work, this serves as the basis for future research where the size of Z-stack data sets

will increase. High-content imaging for screening cell state is currently used to screen

materials or drug libraries in 2D where cells on flat substrates are imaged in a single

plane [23, 39, 42]. However, 3D scaffolds are required for regeneration of 3D tissues

[26, 27, 28] and 3D in vitro cell culture models may be more predictive of clinical

outcomes [11, 41]. As imaging technology rapidly advances, high-content 3D imaging

will emerge for data collection and analysis in 3D scaffolds [15]. Indeed, Oh et al. [33]

have collected thousands of cell nuclei Z-stacks to study cell growth and senescence and

high-content confocal imaging systems are commercially available [16]. Thus, it is not

unrealistic to anticipate that tens of thousands of z-stacks of 3D cell morphology data

will require analysis by algorithms such as the one tested in this work.

It is widely accepted that 3D cell culture provides a more physiologic environment

for cells than does a flat 2D surface. However, exactly what constitutes a 3D environment

from the perspective of a cell has not been defined. This issue was highlighted as a

critical roadblock for biomaterials research by the 2012 National Science Foundation

Biomaterials Workshop [3] (p. 72). The lack of shape variation noted in the Z-direction

for cells on nanofiber scaffolds may indicate that nanofiber scaffolds do not provide a

3D environment from the perspective of the hBMSCs. The algorithm developed in the

current work, which classifies cells by 3D shape, can be used to determine if optimal

cell performance requires a scaffold that allows the cells to adopt a 3D morphology.

In addition, if nanofiber scaffolds do not provide a 3D microenvironment, the current

algorithm can be used to design improved scaffolds. Since the algorithm classifies cells



Parallel Geometric Classification of Stem Cells by Their 3D Morphology 16

by 3D shape, it will be sensitive to scaffold designs that cause changes in 3D shape, and

could identify scaffolds that provide a more 3D-like microenvironment.

It is important to note that current algorithm does not indicate differentiation

vs. non-differentiation, but instead classifies cells based on 3D shape. This work is

an important step because 1) it establishes a tool (the SVM algorithm) to classify cells

based on 3D shape and 2) demonstrates the effectiveness of the tool to discern cells grown

on 3D nanofiber scaffolds from 2D spun-coat films. Future work can use this tool to

identify new scaffold structures and formulations that drive hBMSCs into morphologies

that correlate with differentiation, such as culture on 3D nanofiber scaffolds.

Stemming from seminal observations by Folkman and Moscona in 1978 [19], cell

shape is widely accepted as an indicator of cell state [4, 10, 19, 26, 27, 32, 43, 46].

However, no single measurement can absolutely define cell state. Cell shape is not

absolute and can be ambiguous. A panel of measurements is required, and even then,

cell state is never known with 100% certainty. For example, a cell that has a rounded,

spherical morphology may be dying, in suspension, attached to a poorly adherent

substrate, or a chondrocyte, which has an inherently rounded shape. Thus, additional

measurements are necessary to properly interpret cell shape results. For the case of

hBMSCs, we have observed that several types of morphologies can lead to osteogenic

differentiation, but that a well-spread, flattened morphology does not [26, 35, 27].

The new aspect of the current work is that a 3D cell shape algorithm is used

to classify cells whereas 2D shape metrics were used previously [26, 43]. Although

additional measurements besides cell shape will be required to determine cell state

with greater assurance, 3D cell shape is informative and can be part of a panel of

measurements used to determine cell state. Cell shape may not be 100% indicative of

cell state, but cell shape and cell state are linked and cell shape is an indicator of cell

state.

7. Future Work

Now that we have developed the algorithm, we will apply it to additional hBMSC Z-

stack datasets in the future. hBMSCs cultured on different types of scaffolds or in

the presence of osteogenic supplements will be useful. In addition, larger numbers of

Z-stacks can be tested to improve the statistical confidence in the results.

Since the method we present can theoretically be applied to data sets of any

dimensionality, it will be interesting to examine its performance on a 2D version of

the stem cell data set. The results of this analysis can define the benefit of doing a 3D

analysis and identify what additional information is provided by doing a 3D analysis.

Although we have only applied the algorithm to cell data, the algorithm is general

enough that it can potentially be applied to any type of 3D data, such as CAD models or

protein molecules. The use of the algorithm to classify other data types can be another

interesting avenue for future work.

Another possibility is to take advantage of the progressive nature of the algorithm
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during the SVM classification. Rather than simply generating the histogram using the

full number of lines and then performing the classification, we can instead generate

the histogram using some small initial number of lines and then check the certainty

of the classification. If the classification was still doubtful then the histogram can

be improved by intersecting the cell with more lines, while if the classification was

sufficiently certain then the results can be returned immediately. For an SVM, the

certainty of the classification can perhaps be measured by the distance of the query

point from the hyperplane dividing the two regions of classification.

8. Conclusions

We present an algorithm that can classify hBMSCs (human Bone Marrow Stromal Cells)

by their 3D shape and demonstrate how it can distinguish between hBMSCs grown on a

differentiation-inducing 3D PCL nanofiber scaffold or on a non-differentiation-inducing

2D PCL spun-coat film. The algorithm takes 3D cell image data and intersects it with

randomly generated lines that connect the sides of a cylinder that bounds the cell. The

lengths of line segments that are within the cell are used to generate a histogram. These

histograms can then be used as sample points to train a machine learning algorithm such

as a support vector machine (SVM), which can then be used to classify future cells.

The algorithm is easily parallelizable and is also progressive, allowing it to provide a

rough histogram quickly and then refine it as desired. The parallel GPU implementation

can convert a cell into a histogram representation suitable for machine learning training

or classification by intersecting it with 106 lines in about 1863 ms, representing an over

100-fold speedup from the serial CPU implementation. By applying the algorithm to our

test data set of 41 cells, we were able to achieve 82.9% correct classification using 10-fold

cross validation. This rapid 3D image analysis algorithm can be used to classify stem

cells by their 3D shape to identify 3D tissue scaffolds that drive cells into morphologies

that correlate with differentiation. The algorithm used 3D cell image data in order to

take advantage of the benefits of 3D culture and to capture the effects of 3D scaffold

structure on cell shape. The approach has been demonstrated using stem cell image

data from 1-day cultures, which enables cell classification at a much earlier stage than

is possible with osteogenic markers, which can require weeks of culture.
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