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Abstract

This paper describes our on-going work to accelerate ZENO, a software tool based on Monte
Carlo methods (MCMs), used for computing material properties at nanoscale. ZENO employs
three main algorithms: (1) Walk on Spheres (WoS), (2) interior sampling, and (3) surface
sampling. We have accelerated the first two algorithms. For the sake of brevity, the paper will
discuss our work on the first one only as it is the most commonly used and the acceleration
techniques were similar in both cases.

WoS is a Brownian motion MCM for solving a class of partial differential equations (PDEs).
It provides a stochastic solution to a PDE by estimating the probability that a random walk,
which started at infinity, will hit the surface of the material under consideration. WoS is highly
effective when the problem’s geometry is additive, as this greatly reduces the number of walk
steps needed to achieve accurate results. The walks start on the surface of an enclosing sphere
and can make much larger jumps than in a direct simulation of Brownian motion. Our current
implementation represents the molecular structure of nanomaterials as a union of possibly
overlapping spheres. The core processing bottleneck in WoS is a Computational Geometry one,
as the algorithm repeatedly determines the distance from query point to the material surface
in each step of the random walk.

In this paper, we present results from benchmarking spatial data structures, including several
open-source implementations of k-D trees, for accelerating WoS algorithmically. The paper also
presents results from our multicore and cluster parallel implementation to show that it exhibits
linear strong scaling with the number of cores and compute nodes; this implementation delivers
up to 4 orders of magnitude speedup compared to the original FORTRAN code when run on 8
nodes (each with dual 6-core Intel Xeon CPUs) with 24 threads per node.
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1 Introduction

This work describes the optimization and parallelization of ZENO, a tool, originally developed
with National Institute of Standards and Technology (NIST) support, for computing a class
of material properties of arbitrary geometric shapes at nanoscale via Monte Carlo methods
(MCMs) [7,10–12,15,16,22,23]. ZENO is used to compute a variety of properties, is integrated
into a data analysis package for hydrodynamic data, UltraScan-SOMO [5], and is cited as
one of the reference tools for computing these properties [24–26]. Computing the capacitance
using MCMs, as ZENO does, is an essential tool in many areas of technology, such as VLSI
design [20, 21]. As some of these applications can run for hours or even days, accelerating the
computation would be of great benefit.

The ZENO program is named for Zeno’s Achilles Paradox, a reference to the main algorithm
that the program performs, the Walk on Spheres (WoS) algorithm, which is described in Sec-
tion 3. The program performs three basic operations: (1) ZENO/WoS, (2) Interior Sampling,
and (3) Surface Sampling. The user specifies the properties to compute, which may require
results from multiple operations; the user also specifies the number of random walks or samples
to use. Our colleagues are interested in properties that require the ZENO/WoS and Interior
Sampling computations. As such, we have focused our efforts on accelerating and parallelizing
these two operations. This paper details the ZENO/WoS computation; the techniques we used
to accelerate the Interior Sampling computation were similar.

The ZENO computation uses numerical path integration techniques, which are based on
Brownian motion MCMs, to derive stochastic solutions to a family of elliptic PDEs. These
stochastic solutions are the desired material properties or can be used to directly compute
these properties. The mathematical derivation of the approach first maps these problems onto
the electrostatic capacitance problem, which has a stochastic solution, namely the probability
of a random walk starting from infinity hitting the surface of the material in question. It
then performs a very efficient simulation of the Brownian motion walks by using the WoS
algorithm. WoS can make big jumps when compared to Brownian dynamics techniques, which
are associated with small jumps.

The paper is organized as follows. Section 2 describes the current ZENO/FORTRAN imple-
mentation. It gives the results of our profiling analysis and outlines our strategy for addressing
several of the problems already identified in our new C++ implementation. Section 3 describes
the WoS algorithm and then considers the computational issues that arise when WoS is applied
to additive geometries. Section 4 describes how we accelerated WoS and gives benchmarks for
several candidate spatial data structures and algorithms. Section 5 outlines the parallelization
of the WoS algorithm. Section 6 then presents numerical results and shows that, with the
optimal choice of geometry algorithms, the entire WoS code provides almost perfect parallel
speedup, as expected of such Monte Carlo methods. Finally, Section 7 discusses the results,
provides conclusions, and suggests future work.

2 ZENO

The “current” version of ZENO is 3.41 and is in use at NIST and elsewhere. It is written in
FORTRAN 77 and consists of a single source file of nearly 10 500 lines of code. As with many
FORTRAN 77 legacy codes, the ZENO code does not adhere to best software practices: it
consists of a single source file with some very long routines, common blocks, goto statements,

1Version 3.3 is the last version available from the current ZENO website [12]; version 3.4 is available directly
from the principal authors of ZENO.
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implicit variables, unnamed constants, uncalled routines, and hard-coded mathematical con-
stants, including 14 instances of the literal π with not all having sufficient precision.

Figures 1 and 2 show examples of molecular structures that NIST researchers are interested
in analyzing with ZENO. For 106 walks running on an Intel Xeon 2.6 GHz CPU, the Figure 1
structure took 2.29 h to process, while the protein in Figure 2 took 1.03 h. Researchers are
interested in using a larger number of walks (e.g., 107) or applying the program to materials
databases (e.g., the Protein Data Bank [3]). ZENO’s running time scales linearly with the
number of walks. As such, an improvement in performance will clearly benefit these researchers.

Figure 1: DNA-grafted gold nano-particles
interacting with a two-dimensional DNA-
based origami construct (23 115 spheres)
[14].

Figure 2: PDB protein 1IGY (12 750
spheres) [9].

To better understand the code, we ported the FORTRAN 77 code to Fortran 2008, reor-
ganized it into multiple files and modules, and restructured the long routines to reveal their
internal control structures and the underlying algorithms. We also added an option to specify
an input random number seed; this allows us to run the code in deterministic mode and made
debugging easier. Our subsequent analysis of the code revealed several issues, with two being
the most critical. First, the random number generator saved its state in 31 bits; this is short
enough that a feasibly-large input can potentially cause it to exhaust its rather modest period.
Second, the nearest neighbor search algorithm used a mostly brute-force (with some caching)
full traversal of the input primitives.

Profiling the Fortran 2008 code (Figure 3) on the example in Figure 1 with 104 walks
revealed that over 98% of the running time was spent on nearest-neighbor computations (func-
tion distance) and, more specifically, on a full traversal of the list of primitives (function
distance_scan_all_elts). There is a mechanism for finding the nearest neighbor from a
cached list of 3–4 neighbors. This mechanism (function distance_scan_neighbors) was in-
voked in 279 156 of the 314 268 nearest-neighbor queries; however, it failed for 147 260 of these,
resulting in the full traversal still needing to be performed. As a result, the full traversal was
performed 182 372 times and dominated the execution time. Since the algorithms scale linearly
with the number of walks, these results should remain valid for much larger numbers of walks.

Based on this analysis, we created a plan for a redesigned version of ZENO to be implemented
in C++. We selected SPRNG [17] as the random number generator library because it provides
features that are useful for parallelization, such as multiple independent random number streams
and built-in MPI support. For the nearest neighbor search algorithm, we evaluated a number
of different options, as described in Section 4. Finally, we supported parallelism through both
shared-memory multi-threading and MPI, as described in Section 5.
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zeno_shape_distances::
distance
98.71 %
(0.00 %)
314268×

zeno_shape_distances::
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19.00 %
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zeno_shape_distances::
distance_scan_neighbors

79.71 %
(0.01 %)
279156×

79.71 %
279156×

zeno_shape_distances::
min_shape
71.75 %

(29.71 %)
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71.74 %
4215528780×

zeno_sort_utils::
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17.89 %

(17.89 %)
4215528780×

17.89 %
4215528780×

79.68 %
147260×

0.01 %
837468×

Figure 3: Partial profile of ZENO/Fortran-2008

3 The Walk on Spheres Method

The Walk on Spheres (WoS) algorithm simulates the Brownian motion of a particle (a “random
walker”) in the vicinity of an object. Brownian motion can be informally defined as taking
a sequence of very small steps in random directions. Such a particle will eventually either
hit the object or, with a non-zero probability, leave the object’s vicinity and never hit it.
Mathematically, Brownian motion can be thought of as the solution to a simple stochastic
differential equation (SDE) and, as such, the most straightforward method for simulating such
a walk is to use a SDE solver with a small time step. WoS avoids performing many small steps
by observing that a random walker starting at the center of an empty sphere will reach all
points on the surface of the sphere with equal probability. Therefore, the entire random walk
that occurred within the sphere can be sampled by simply using a point uniformly distributed
on the surface chosen as an exit point sample. The full walk can then be sampled by forming a
series of spheres centered at the walker’s locations and jumping to the surfaces of these spheres
in sequence. The larger the spheres, the more efficient the walk will be, and so we form the
largest possible empty sphere at each step.

The only two remaining issues are to define (1) when the walker has hit the object and
(2) when it has left the object’s vicinity and escaped. A hit is defined as simply the walker
moving within some small distance of the object. An escape occurs with a known probability
when the walker leaves a bounding sphere of a given radius around the object. If the walker
leaves the bounding sphere but does not escape, it is re-positioned on the bounding sphere
based on a known, nonuniform probability distribution that is weighted towards the walker’s
location outside the sphere. This gives rise to Algorithm 1.

Once a random walk algorithm has been defined, the capacitance of an object can be com-
puted by performing a large number of random walks and computing the fraction of walks
which hit the object. These walks can be performed either sequentially or in parallel. This
computation is given in Algorithm 2.

The WoS Monte Carlo algorithm has many advantages over deterministic algorithms. One
of these is that the region whose properties are being measured can be represented via additive
geometry, resulting in a very small memory footprint. Furthermore, there is no need to discretize
the geometry to improve accuracy (e.g., refining a mesh). As such, the most demanding part
in WoS is computing the spheres needed to take the next WoS step. This allows us to conclude
that the computational challenge in WoS is due to Computational Geometry. We need to
repeatedly answer the following geometric query, where Ω is the region and ∂Ω its surface.

Given a query point x /∈ Ω , find y ∈ ∂Ω that minimizes |x− y|2

When the region is represented via additive geometry as the combination (union, intersec-
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Algorithm 1 ZENO/WoS

function Do Random Walk
Place walker uniformly on bounding sphere
loop

Find nearest point on object
if walker is within object skin then

return Hit
end if
Form largest empty jump sphere centered at walker
Place walker uniformly on jump sphere
if walker is outside bounding sphere then

if walker escapes then
return Escape

else
Replace walker nonuniformly on bounding sphere

end if
end if

end loop
end function

Algorithm 2 Capacitance

function Get Capacitance
for all Walks do

Record result of Do Random Walk
end for
Reduce results to fraction of Hits
return fraction of Hits × bounding sphere radius

end function

tion, or complement) of M simple geometric shapes, this query requires at most O(M) distance
computations. Since many objects have very large M , we need algorithms that can do much
better than O(M) using additive geometry representations. Furthermore, we expect the num-
ber of queries N to be much larger than M (e.g., M = 104 and N = 107 to 108). As such, a
significant amount of preprocessing time in terms of M for building an appropriate spatial data
structure is acceptable, as this cost will be amortized over all queries.

4 Geometry Data Structures and Algorithms

As confirmed by our analysis in Section 2, the main computational operation in the WoS
algorithm is finding the nearest geometric primitive to a given query point. As such, we are
evaluating several data structures to identify the ones that can effectively answer a very large
number of these queries (e.g., 107 to 108).

In this evaluation, we will consider a data structure’s creation time (labeled as pre-processing)
and search time for 107 queries. We will also compare the various data structures with the naive
approach that uses a full search. Figures 1 and 2 show molecular complexes consisting of 23 115
and 12 750 spheres, respectively, that we will use as our evaluation examples.
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Our current application uses spheres as its geometric primitive. As such, we seek data
structures that can answer closest-sphere queries. There are many off-the-shelf algorithms and
libraries to handle closest-point queries [2,4,18,19], but relatively few that handle closest-sphere
queries directly. However, we can readily extend closest-point queries to handle spheres in one
of two ways: (1) binning spheres with the same radius, solving the closest-point queries for the
sphere centers in each bin, mapping the closest-point in each bin back to the corresponding
radius, and selecting the closest sphere; (2) sampling sphere surfaces and applying the closest-
point queries to the resulting point samples. Currently we are using the first method; this
approach works well as long as the number of bins (number of sphere radii) remains small.

We have evaluated several k-D-tree-based implementations from the ANN 1.1.2 [2], FLANN
1.8.4 [18], nanoflann 1.1.8 [4], and CGAL 4.6 [19] libraries. In the future, we may also investigate
grid-based algorithms, such as the one described by Franklin [8], or algorithms based on AABB-
trees (Axially-Aligned Bounding Box), such as the one from CGAL [1], which may be capable
of using spheres as their primitive.

In order to decide which data structure library to use in our C++ version of ZENO, we
conducted a series of benchmarks. For each data structure we inserted a set of spheres (based
on their center points, as described above) and then conducted a set of closest-sphere queries
from randomly chosen points. The results are given in Table 1. Based on these benchmarks,
we chose the nanoflann library [4] for our implementation.

Algorithm Preprocess (ms) Search (s) Speedup

Linear 0 175 ± 0.4 1×
CGAL k-D 0.852 ± 0.037 2.67 ± 0.09 65.5×
ANN 9.38 ± 0.62 5.25 ± 0.04 33.3×
FLANN 4.59 ± 0.36 5.83 ± 0.15 30.0×
nanoflann 3.99 ± 0.16 2.43 ± 0.02 72.0×

Table 1: 106 closest-sphere queries on the example from Figure 1 run on a desktop PC1. Errors
are ±2 standard deviations of the mean with 20 replications.

The data structures discussed so far can be classified as primitive-partitioning, since they
divide space into regions that contain small groups of input primitives. Answering the closest-
primitive query consists of finding and checking the region in which the query point lies and
neighboring regions to determine the closest. Other data structures, such as Voronoi diagrams,
can be classified as space-partitioning, in which the points in each region share the same closest
primitive. For these data structures, answering the closest-primitive query consists of finding
the region in which the query point lies and checking the primitives in that region to see which
is the closest; neighboring regions do not have to be searched.

5 Parallel Implementation

The ZENO/WoS algorithm from Section 3 is “embarrassingly parallel” in the sense that each
walk and each sample are completely independent from every other walk and sample. As such,
our parallelization schemes are fairly straight-forward.

1Desktop PC used contains dual Intel Xeon 2.3 GHz CPUs (total of 12 physical and 24 logical cores), 128
GiB RAM, Ubuntu 14.04, Kernel 3.13.0 x86 64, GCC 4.8.4 with -O3
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Stochastic parallel programs require multiple independent streams of pseudo-random num-
bers. We generate these independent streams by using the “Scalable Parallel Random Number
Generators” library (SPRNG) [17].

We have implemented two different parallelization schemes, one based on C++ Standard
Library threads (using C++11) and the other based on MPI. These can be used simultaneously
to run multiple threads on each node in a cluster of nodes connected via MPI.

For the shared-memory multi-threading parallelization, we first insert the input spheres
into the k-D tree data structure. Since the k-D tree query functions do not modify the data
structure state, we can simply have each thread execute the same walk or sample code as in the
serial version. Once all the threads have completed, we perform a simple reduction operation
by summing their results.

For the MPI parallelization, memory is not shared. As such, we first broadcast the set
of input spheres to each process using MPI. Each process then builds its own local copy of
the k-D tree data structure and performs its own walks and samples, either serially or using
shared-memory multi-threading as described above. Once the processes complete, their results
are combined using a reduction operation.

6 Results

Table 2 gives the speedups resulting from the various features of our implementation: the C++
port of the algorithm with a linear data structure, the addition of the nanoflann spatial data
structure library, and multi-threaded and multi-node parallelism. On the Gold Nanoparticle
example, we achieve over 4 orders of magnitude speedup over the Fortran 2008 implementation
for the ZENO/WoS computation.

Gold Nanoparticle Protein 1IGY

Time (s) Speedup Cumul. Time (s) Speedup Cumul.

Fortran 2008 8240 ± 110 1× 1× 3710 ± 6 1× 1×
C++/Linear 3970 ± 4 2.08× 2.08× 2090 ± 2 1.77× 1.77×
C++ 42.0 ± 0.1 94.5× 196× 71.5 ± 0.1 29.3× 52.0×
C++ 24 T 3.27 ± 0.11 12.9× 2520× 5.42 ± 0.29 13.2× 685×
C++ 24 T, 8 N 0.797 ± 0.026 4.10× 10300× 1.14 ± 0.10 4.78× 3270×

Table 2: Single-node speedups for ZENO/WoS computation on the Gold Nanoparticle example
(Figure 1) and PDB protein 1IGY (Figure 2) with 106 walks. C++/Linear performs exhaustive
search; C++ uses nanoflann; T is the number of threads and N is the number of compute
nodes. Errors are ±2 standard deviations of the mean with 20 replications. Benchmarks run
on Raritan cluster1.

Figure 4 illustrates the strong scaling of our implementation as the degree of parallelism
increases for a fixed problem size. For these tests, we measured the effect of increasing either
the number of threads per node or the number of compute nodes in a cluster communicating
with MPI. The times reported are the total running times for the entire computation, including
reading data from disk, distributing it among the nodes, performing the ZENO/WoS compu-
tation, and combining the results. On the Gold Nanoparticle example, we achieve greater than

1Raritan cluster nodes used contain dual Intel Xeon 2.6 GHz CPUs (total of 12 physical and 24 logical
cores), 8 GiB RAM, RHEL 5.11, Kernel 2.6.18 x86 64, GCC 4.9.3 with -O3, MPICH 3.1.4
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19x speedup with our multi-threaded single-node implementation with 24 threads (as shown in
Table 2) through the use of multi-node parallelism with 32 nodes.

We validated the correctness of our results by comparing several output values (including
capacitance and eigenvalues of the polarizability tensor) against theoretical values in the case of
a sphere, and against the Fortran 2008 version’s values for both a sphere as well as the examples
in Figures 1 and 2. Our results were generally within 1% of both the theoretical values and
the Fortran 2008 version’s values; these error bounds are similar to those of the Fortran 2008
version. The magnitude of these errors is consistent with what would be expected due to the
algorithm’s stochastic nature.

Figure 4: Strong scaling on Gold Nanoparticle example (Figure 1) (left) and PDB protein
1IGY (Figure 2) (right) with 107 walks. The first row demonstrates scaling threads on a single
node. The second row demonstrates scaling nodes with 24 threads per node. Error bars are ±2
standard deviations of the mean with 20 replications. Benchmarks run on Raritan cluster1.

7 Conclusion and Future Work

We have examined the scalability of various spatial data structures and parallel performance in
a new parallel C++ implementation of the ZENO/WoS algorithm. This new version improves
on the Fortran-based implementations by 3 to 4 orders of magnitude; it should return results
in a timely manner for models with up to 105 to 106 spheres using 107 to 108 walks. Also, and
perhaps more importantly, such a performance improvement will allow ZENO/WoS to be used
for new classes of applications, for example as the kernel call in an inner loop for searching a
materials design space. We intend to release the ZENO C++ code in the near future.

In the future, we want to investigate the use of input types other than a union of spheres,
such as triangle meshes or voxels. This will allow the program to be applied to a much wider
range of objects, such as smooth molecular surfaces or even macro-scale objects.

1Raritan cluster nodes used contain dual Intel Xeon 2.6 GHz CPUs (total of 12 physical and 24 logical
cores), 8 GiB RAM, RHEL 5.11, Kernel 2.6.18 x86 64, GCC 4.9.3 with -O3, MPICH 3.1.4

Accelerating ZENO/WoS Juba, Keyrouz, Mascagni, and Brady

276



We are currently experimenting with point-sampled surfaces, which can enable support for
a wide variety of shapes and primitives. In our current implementation, point samples are
treated as discs of a certain radius that cover the surface of the object. For the ZENO/WoS
computation, we approximate the nearest surface point on the object by the nearest point on
the disc corresponding to the nearest sample point on the object. We can easily find the nearest
sample point by using the data structures from Section 4. An alternative or complement to
point-sampling is to develop and implement a family of Walk-on-X methods such as Walk-on-
Planes and Walk-on-Parallelepipeds [6, 13].

Another potential area of future work is to investigate the use of approximate nearest-
neighbor search, which returns a neighbor to which the distance is within some user-defined
percent error of the distance to the true nearest neighbor. This is supported by most of
the libraries we have tested. Approximate nearest-neighbor search is generally used for high-
dimensional data where exhaustive search can be prohibitively expensive, but since we expect
our computations to be very tolerant to error, we may be able to significantly benefit from it.

We may also investigate the use of space-partitioning data structures, as discussed in Sec-
tion 4, using either spheres or points as primitives. Yet another research direction is to develop
a tree-based data structure that is custom-built for the 3D nearest-neighbor queries encountered
in the WoS method.
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